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The problem of c r ack  propagation in the presence  of a large number  of branching events 
is considered in the case  of a semi- inf ini te  inhomogeneous plate to whose edge an impact  
load is applied. The theory  of random processes  is employed.  The mean-square  distance 
and the mean- squa re  angular deviation of the c racks  from the branching axis are  de te r -  
mined; these quantities are  convenient for compar ison with the experimental  data. 

1. Exact solutions of the dynamic equations of the theory of elast ici ty [1,2] have shown that in an iso-  
tropic e las t ic -br i t t l e  plate branching of a c rack  is possible at a propagation velocity exceeding 0.6c t ( t rans-  
verse  elast ic wave velocity).  The angle between the expected direction of branching and the direction of 
propagation of a c rack  moving at a velocity of 0.8c t is equal to 30-60 ~ [1]. Experimental  studies [1,3,4] 
have revealed  a large number  of c rack  branching events ,  in which two equivalent c racks  are  formed, in 
connection with the brit t le f rac ture  of plates composed of var ious mate r ia l s .  In these studies the f i rs t  
c r ack  branched whenever its propagation velocity exceeded a cer tain value. The angle between the f i rs t  
and the newly formed c rack  did not exceed 20-40 ~ . 

Below, the theory  of random processes  [5] is employed to determine the mean-square  distance and 
the mean- squa re  angular deviation of the c racks  f rom the branching axis, which coincides with the d i r ec -  
tion of propagation of the f i rs t  c rack .  A large number  of c rack  branching events is investigated in a s emi -  
infinite inhomogeneous e las t ic -br i t t l e  plate subjected to the action of an impact load (Fig. 1). 

2. Real  mate r ia l s  consis t  of a large number  of "p r imary"  e lements :  grains ,  c rys ta l s ,  etc.  Within 
each smal l  e lement  the mate r ia l  is homogeneous,  but re la t ive to each other the elements  are  Inhomogene- 
ous with respec t  to mechanical  proper t ies  or the state of s t r e s s  and strain.  Such a mater ia l  we shall call  
"quasi-homogeneous ." Let an inhomogeneity consis t  of quasi-homogeneous mate r ia l  and contain a con-  
siderable number  of p r im a ry  elements .  Then by an" "inhomogeneous" medium we understand a quasi-  
homogeneous mate r ia l  in which the inhomogeneities are  s ta t is t ical ly  distr ibuted.  

We will define the concept of c r ack  energy E.  The energy balance equation for c rack  propagation [6], 
r e f e r r e d  to the entire length of the c rack ,  has the form 

w = P + r (2.1) 

Here,  W is the l iberated Mastic energy,  P = 2~s is the sur face  energy,  and T = kpl2v2(r2/2E ~ is the 
kinetic energy  of the c r ack  (usual notation in the express ions  for P and T). By the energy of a propagating 
c rack ,  completely determined by the physicomechanical  cha rac te r i s t i c s  and the state of s t r e s s  of the 
mater ia l ,  we understand the sum of the surface and kinetic energies .  In this case  it is possible to give an 
explanation of c r ack  branching in energy  t e r m s .  Crack  propagation leads to an increase  in the l iberated 
elast ic energy.  As the f rac tu re  rate increases ,  the kinetic energy  r i ses  to a cer ta in  l imit determined by 
the maximum possible c r ack  propagation velocity.  In accordance with Eq. (2.1) the surface  energy must  
also increase ,  i .e. ,  the f rac ture  surface  must  become la rger ,  which also explains the formation of new 
cracks  at the tip of the moving c rack .  

Thus, the branching p rocess  occurs  when the c rack  energy reaches  a cer tain value. At a sufficiently 
large  c r ack  Fcopagation velocity the kinetic energy obviously makes the principal contribution to the energy 
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Fig. 1 

of the c rack .  Accordingly,  the above conclusion 'does not contradict  the 
previously obtained theoret ical  [1,2] and experimental  [3,4] resul ts  con- 
cerning the effect of the propagation velocity on c rack  branching. 

We formulate the following hypotheses:  

1) Any c rack  with an energy exceeding a cer tain value branches in- 
to two secondary  c racks .  

2) Crack  branching occurs  in the quasi-homogeneous mater ia l  and 
in the inhomogeneities of the plate, the infinitely thin interface not being 
a source  of c r acks .  

3) The angular deviation of the c racks  associated with branching is 
smal l .  

We will obtain a vec tor  equation for the probabili ty a fit, y, x)dR*dy of finding a c rack  within the limits 
R, R + dR at a distance x f rom the edge of the plate and with horizontal  deviation y, y + dy from the branch-  
ing axis, which coincides with the ,direction of propagation of the f i rs t  c rack .  In this case  

dR* - -  dRx dry 
kl 

where R. is  the vector  analog of the c rack  energy E, and k 1 is the c rack  shape pa ramete r .  

Let  b(l~, R)dR* determine the probability of a c rack  with R, tt + dR being produced f rom a c rack  with 
R1; c(x7 is the density of the inhomogeneities in the plane; then k2c(x)dx/cos ot is the probabili ty of hitting 
an inhomogeneity in the layer  dx. Here,  w is the angle between the ver t ical  and the direction of c rack  propa-  
gation, k 2 is a constant  for a given plate mater ia l .  

We will consider  a c r ack  with R ,  whose tip is located at a distance x f rom the edge of the plate. The 
probabil i ty that a c rack  in the layer  h - x  (above x) will not hit an inhomogeneity is equal to exp ~[L(h) - 
L(x) ] /cos  o~]}, where 

L (x) = I c (x,) d~. 
or 

The probabili ty of this c r ack  emerging from an inhomogeneity located in the layer  h, h + dh, is 
L I ~h)dh/cos ~ .  The probabil i ty that the preceding c rack  had R i, R 1 + dR  i is equal to a(Ri ,  r ,  h)clRl* d r ,  
where r ,  r + dr  - ee is its displacement  f rom the branching axis of the c racks .  

The equation for the c rack  distribution function a has the form 

rVO 

~e 

- -  L (x) X LI (h) dh / cos a dR1* q- a (R, r~,  cr exp - ~  (2.27 

where  

r = y - - / C y ( h - - z T / R ~ ,  r = r ~  at h - - ~  

We differentiate (2.27 with respec t  to x and y 

Oa R v oa i a (RI) b (R x, R) dRx* O-Z- cos ~ -- ~ ~y + a = (2.3) 

Here ,  L 1 is a function of L. For  a plate in which the density of the inhomogeneities is constant L 1 = 
- k2c; in this case  the unit of length can be so selected that k2c = 1. 

We pe r fo rm on a a Four ie r  t ransformat ion  with respec t  to y 

~(R, p, L) = Sa(R,  y, L)exp ( -i ipy)dy (2.47 
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Then 

~) = ~,tp,n (R , L) p~/m! (2.5)  
T/t 

where  

~m = S ( -  ty)~ a (R, y, L) dy ( 2 . 6 )  

F r o m  (2.3) we obtain the equation for  

0~p ip.R 
i~(R, )  b (R,, R) dR** E c o s a _  L--~$ •  = (2.7) 

We di f ferent ia te  (2.7) m t imes  with r e s p e c t  to p and set  p = 0. We wri te  the obtained equations for 
~ m  in the previous  va r i ab l e s  

ax (R) 1 0L cos cr + x (R) = x (Ri) b (Ri, R) dRi* (2.8) 

Then 
We employ the notation: 

+ y (R) = i y (R1) b (R,, R) ~n,* (2.9) COS Cr 

is the angle between R and R l, [31 is the angle between R 1 and the ve r t i ca l .  

cos  ~i = cos  r162 cos  ~ -+- s in  ~z s i n  

Equations (2.8) and (2.9) take the f o r m  

0z (E, cos a) 
OL c~176 = l  i x ( E i ' c ~ 1 7 6 1 7 6  (2.10) 

E - - i  

Oy (E, cos a) ii: OL COSa + y ( E ,  cos~) = y(E, ,  cos ~i) b (El, E, cos~)dEid(cos~) (2.11) 
B - - 1  

3. We will de te rmine  the m e a n - s q u a r e  dis tance and the m e a n - s q u a r e  angular  deviation of the c racks  
f rom an axis coinciding with the di rect ion of propagat ion of the f i r s t  c r ack .  These  quantit ies take the fo rm 

+i +I 

(3 . i )  

+I +i 

(3.2) 

In o rde r  to find (d 2 > and (f2> it is n e c e s s a r y  to de te rmine  the coeff ic ients  of the expansion of 
x(E, cos a )  and y(E, cos a)  in Legendre  polynomials .  

�9 i x(~,oos~) E (K+~)xK(E)P~(oos~)  
K~0 

( 3 . 3 )  

r 

i ) (E) P~ (cos ~) y (Z, oo~ ~) = Y, (K + T Y~ 
K = 0  

(3.4) 

Then the unknown quantit ies take the f o r m  

<d ~ (E)> = Xo (E)/yo (E) 

<# (E)> = 2/3 [Yo (E) --  y~ (E)l/yo (E) 

(3.5) 

(3.6) 
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We substi tute (3.3) and (3.4) in Eqs .  (2.10) and (2.11), respect ively ,  and simplify.  Applying the addi- 
tion theorem for Legendre  polynomials  

provided that 

PK (cos ~1) = P~ (cos a) px  (cos $) 

bK (El, E) = / b (El, E, cos ~) PK (cos ~) d (cos ~) 
- - I  

(3.7) 

(3.8) 

we find 

"~I ~o 
1 S z (El, cos ~,) b (g,, ~, cos ~) d (cos ~) = F, (K + ~ )  .~  (gl) b~ (~1, g) P~ (cos =) 

- -1  K=D 

(3.9) 

Multiplying (2.10) by PK(COS ~) and integrating with respec t  to cos ~ f rom -1 t o  +1, we obtain 

Oxl (E) I OL -}- xo (E) = xo (El) bo (E~, E) dE1 
E 

(3.10) 

But x{E, cos oQ is proport ional  to sin2~; accordingly,  on the basis of hypothesis 3) we can neglect  the 
express ion  

xl (E) -- xo (E) = / x (E, cos a) (cos ~ -- t) d (cos ~) (3.11) 
- - I  

i .e . ,  r ep lace  xl(E) in (3.10) by x0(E). 

Solving the equation obtained by means  of a Mellin t ransformat ion ,  we obtain 

zo(E, L) ffi 2~ (3.12) 

where  

v = (2~0 -~ 

Q(S, L) Lexp[--t(s)L] i L % x p [ - - t ( s ) L ]  
= r  - -  T (3.13) 

It can be shown that the mean number  of c racks  at a distance L in the plate is given by the express ion  

~+r  
{ E ]-('+*) Y~ I k~Y exp[--t(s)L]ds 

sr 

(3,14) 

wile re  

0 

(3.15) 

if  branching began f rom a single c rack  with energy  E 0 . 

Then the mean-square  distance of the c racks  f rom the branching axis,  coinciding with the direct ion of 
propagation of the f i r s t  c rack ,  is equal, in accordance  with express ion  (3.5), to the rat io  of (3.12) to (3.14). 

Multiplying (2.11) by PK(COS~) and integrating with r e spec t  to cos ~ f rom -1 to +1, we obtain 
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O_ [H~y~.+~ (E) -4- H~YK_~ (E)] + y~ (E) -= i YK (Ex) bE (Ez, E) dEz r 
t1 

(3.z6) 

where  

K + t  K 
I ~ 1 =  2K + t ' [-I2 = 2K + I 

By v i r tue  of hypo thes i s  3) we neg lec t  t e r m s  depending on the coef f ic ien t  (1 - cos  o~) 2, which v a r i e s  as 

the mean  of the four th  power  of ~ .  

Subst i tut ing K = 0, K = 1 in Eq.  {3.16) and sub t r ac t ing  the r e s u l t s ,  we find 

e~ 

o f [ y o ( E )  - -  y~(E)] + [yo(E) --  y~(E)] = [yo(E~) - -  y~(E~)] bo(E~, E)dE~ 
N 

+ ~ Yo (E~) {b o (E~, E) -- b~ (Et, E)Idg~ (3.1 7) 
N 

The solut ion of this  equat ion,  obtained by m e a n s  of a Mell in t r a n s f o r m a t i o n ,  has  the f o r m  

2_ v ~ " E ~-<,+1) 
3 [yo(E, L ) - -  y~(Z, L)} = ~ ~ ( ~ 7 o )  ] ( s ) a ( s ) d s  ( 3 . 1 8 )  

w h e r e  

G(s) = e x p [ - -  t ( s - - t )  L l - - e x p [ - -  t(s) L] ( 3 . ~ 9 )  

0 

It can  be shown that  b0(E1, E) and b0(El, E) - b 2 (E l, E) have the f o r m  

v - E ~ - 0 + 1 )  

So--i~ 

(3.20) 

(3.21) 

so+t~ 
2 v I ( E 1-0+I) -~ [bo(E1, E) -- b~(E~, E)I = ~ \ -~ j  (ql -- q~)n(s)ds 

So--~oo 

(3.22) 

w h e r e  
ql = q [NZ (s)],  q, = q [ N l  (s - -  i ) l  

q (~) = I - -  2 [ l  - -  ( i  + ~)} e - o ] a  - '  

n (s) ---- [2 --  l (s) - -  l (s --  i)] [l (s) - -  I (s - -  i)] -~ 

O 0 

(3.23) 

(3.24) 

( 3 . 2 5 )  

N is the m e a n  n u m b e r  of b ranch ings  that  a c r a c k  unde rgoes  in pass ing  th rough  an inhomogene i ty ,  ~ (u 1, # 2) 
is the p robab i l i t y  of  the e n e r g i e s  of  the c r a c k s  f o r m e d  being in the r a t i o s  # I, # 2 to the e n e r g y  of  the f i r s t  
c r a c k .  
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F r o m  Eqs.  (3.15) and (3.21) there  follows 

t (s) -- q [NI (s)] 

and f rom (3.20) and (3.22) 

(3.26) 

] (s) = n (s) (3.27) 

Thus, the mean- squa re  angular  deviation from an axis coinciding with the direction of propagation of 
the f i r s t  c rack  is equal, in accordance  with expression (3.6), to the rat io of (3.18) to (3.14). 

4. In order  to obtain resul ts  we write the initial condition for  the number  of c racks  at a distance L 
f rom the edge of the plate 

yo(E, L = 0 )  = 6 ( E - - E o )  (4.1) 

Y0 (E, L = 0) = I (4.2) 

The express ion for Y0 (E, L) is given in (3.14) and 

(4.3) , I + Yo(E, L)---- ~ (-K;,. exp[--t(s)L]-; 

where t(s) is given by (3.26), (3.25), and (3.23). 

The mean-square  distance of the c racks  from the branching axis has the form 

(4.4) 

So3-L~ 
2V " E ~-(s+1) 

<d2(E'LI>----yo(E,L) Eo' I (-~o) ](s) Q(s,L)ds 
So--Coo" 

s+-{--~.~ 

<D + (E, L)> ---- Yo (E, L) Eo ~oo ] (s) O (s, L) 
$~--tvo 

where the values of v,j(s) and Q(s, L) were determined in Sec. 3. 
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Thus, the mean-square  distance f rom the branching axis of the c racks  
formed in a plate as a resul t  of impact is inverse ly  proportional to the 
energy  of the f i rs t  c rack  and after f i rs t  increasing begins to decrease  as a 
resu l t  of the depar ture  of the c racks  f rom the energy interval in question. 

For  the mean-square  angular deviation of the c racks  f rom the branch-  
ing axis we have 

�9 v 

<I~(E, L))= yo(E,-L)Eo~ 
{ E ,)-(~+I) f _~o j(s)G(s)ds 

r  

(4.6) 

so"F~oo 
E (s) ~ (4.7) 

$o--~+co 

where G(s) is given by (3.19). 

Thus, the mean-square  angular deviation of the c racks  f rom a branch-  
ing axis coinciding with the direct ion of propagation of the f i rs t  c rack  in a 
semi-infini te  e las t ic -br i t t le  inhomogeneous plate is inversely proportional 
to the energy  of the f i rs t  c rack  and after  initially increas ing tends to a c e r -  
tain constant value. 
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In Figs .  2 and 3 we have plotted in relat ive units the dependence on the length of the plate of the quan- 
tities s and z, which are  respect ively  equal to the square roots  of the mean-square  distance and the mean-  
square angular deviat ion of the c racks  from the branching axis in a semi-infini te  inhomogeneous plate, whose 
edge is subjected to the action of a unit impact load. tn this case branching begins f rom a single c rack  with 
energy E 0 . 

Comparison with the c rack  branching data for sheets  of glass  obtained by $hardin and co -worke r s  [3] 
shows that the resul ts  of the proposed theory (increase of the mean- squa re  distance and the mean-square  
angular deviation of the c racks  f rom the branching axis in a quasi-homogeneous plate) are  in qualitative 
agreement  with the experimental  data. 

In [3] the procedure  for loading the test  specimens was as follows. The sheets of glass were f i rs t  
loaded in tension. Then fracture was initiated by the impact  of a knife edge against the edge of the sheet.  
In this case the mean- squa re  distance and the mean-square  angular deviation from a branching axis coin-  
ciding with the direct ion of propagation of the f i rs t  c rack  continuously increased.  Obviously, this was be-  
cause the energy  of the c racks  formed increased  at the expense of the elastic energy accumulated in the 
spec imen-machine  sys tem.  

Thus, it is not possible to expect complete qualitative agreement  between the experimental  and theo- 
re t ica l  data (for the par t icular  case of a quasi-homogeneous plate) in view of the difference between the a s -  
sumed plate loading procedure  and that employed in [3]. 

The author thanks Yu. N. Rabotnov for his valuable comments .  
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