BRANCHING OF CRACKS PRODUCED IN A PLATE BY IMPACT

V.M. Verchuk UDC 539.375:678

The problem of crack propagation in the presence of a large number of branching events
is considered in the case of a semi-infinite inhomogeneous plate to whose edge an impact
load is applied. The theory of random processes is employed. The mean-square distance
and the mean-square angular deviation of the cracks from the branching axis are deter-
mined; these quantities are convenient for comparison with the experimental data.

1. Exact solutions of the dynamic equations of the theory of elasticity [1,2] have shown that in an iso-
tropic elastic-brittle plate branching of a crack is possible at a propagation velocity exceeding 0.6cy {trans-
verse elastic wave velocity), The angle between the expected direction of branching and the direction of
propagation of a crack moving at a velocity of 0.8c¢ is equal to 30-60° [1]. Experimental studies [1,3,4]
have revealed a large number of crack branching events, in which two equivalent cracks are formed, in
connection with the brittle fracture of plates composed of various materials. In these studies the first
crack branched whenever its propagation velocity exceeded a certain value. The angle between the first
and the newly formed crack did not exceed 20-40°.

Below, the theory of random processes [5] is employed to determine the mean-square distance and
the mean-square angular deviation of the cracks from the branching axis, which coincides with the direc-
tion of propagation of the first crack, A large number of crack branching events is investigated in a semi-
infinite inhomogeneous elastic-brittle plate subjected to the action of an impact load (Fig. 1).

2. Real materials consist of a large number of "primary" elements: grains, crystals, eic. Within
each small element the material is homogeneous, but relative to each other the elements are inhomogene~
ous with respect to mechanical properties or the state of stress and strain. Such a material we shall call
"quasi-homogeneous." Let an inhomogeneity consist of quasi-homogeneous material and contain a con-
siderable number of primary elements. Then by an "inhomogeneous" medium we understand a quasi-
homogeneous material in which the inhomogeneities are statistically distributed,

We will define the concept of crack energy E. The energy balance equation for crack propagation [6],
referred to the entire length of the crack, has the form

W=P+T ©.1)

Here, W is the liberated elastic energy, P = 2ys is the surface energy, and T = kpl?vi¢?/2E? is the
kinetic energy of the crack (usual notation in the expressions for P and T). By the energy of a propagating
crack, completely determined by the physicomechanical characteristics and the state of stress of the
material, we understand the sum of the surface and kinetic energies. In this case it is possible to give an
explanation of crack branching in energy terms, Crack propagation leads to an increase in the liberated
elastic energy. As the fracture rate increases, the kinetic energy rises to a certain limit determined by
the maximum possible crack propagation velocity. In accordance with Eq. (2.1) the surface energy must
also increase, i.e., the fracture surface must become larger, which also explains the formation of new
cracks at the tip of the moving crack,

Thus, the branching process occurs when the crack energy reaches a certain value. At a sufficiently
large crack propagation velocity the kinetic energy obviously makes the principal contribution to the energy

Dnepropetrovsk. Translated from Zbhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp.
157-164, September~October, 1971, Original article submitted May 10, 1971,

©197¢ Consultants Bureau, o division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011,
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for §15.00.

767



l,a of the crack., Accordingly, the above conclusion-does not contradict the
________ %_ previously obtained theoretical [1,2] and experimental [3,4] results con-
J

cerning the effect of the propagation velocity on crack branching.

e

We formulate the following hypotheses:

1) Any crack with an energy exceeding a certain value branches in-
' to two secondary cracks,

O 2) Crack branching occurs in the quasi-homogeneous material and
z in the inhomogeneities of the plate, the infinitely thin interface not being
- a source of cracks.

Fig.1 3) The angular deviation of the cracks associated with branching is

small.

We will obtain a vector equation for the probability a R, y, x)dR*dy of finding a crack within the limits
R, R + dR at a distance x from the edge of the plate and with horizontal deviation y, y + dy from the branch-
ing axis, which coincides with the direction of propagation of the first crack. In this case

dR_dR,

ky

dR* =

where R.is the vector analog of the crack energy E, and k, is the crack shape parameter.

Let bR, R)JdR* determine the probability of a crack with R, R + dR being produced from a crack with
R;; c(x) is the density of the inhomogeneities in the plane; then k,c(x)dx/cosa is the probability of hitting
an inhomogeneity in the layer dx. Here, « is the angle between the vertical and the direction of crack propa-
gation, k, is a constant for a given plate material,

We will consider a crack with R, whose tip is located at a distance x from the edge of the plate, The
probability that a crack in the layer h — x (above x) will not hit an inhomogeneity is equal to exp {[L.(h) —
Lx)]/cos a]}, where

Lz = S ¢ (zy) dxlv.

The probability of this crack emerging from an inhomogeneity located in the layer h, h + dh, is
Ly h)dh/cos @. The probability that the preceding crack had Ry, Ry + dR, is equal to a®Ry, r, h)dR *dr,
where r, r + dr — ee is its displacement from the branching axis of the cracks.

The equation for the crack distribution function @ has the form

a®,y,2) == {a(®yr, )b (R, R)exp ZHZ2E

€Os o

X Ly (B)dhjcosodRy* + a(R, e, oc) exp —Liz) (2.2)

cos o

where

r=y—Ry(h—2z)/Ryy T=76 at h=oc
We differentiate (2.2) with respecttox andy

R - _—
2o cosa — g e+ a=\a(R)b(Ry, R)dR* @.3)

Here, L is a function of L., For a plate in which the density of the inhomogeneities is constant L, =
—k,c; in this case the unit of length can be so selected that k,c =1.

We perform on a a Fourier transformation with respect to y

YR, p, L) = [ a(R, y, L)exp (= ipy)dy (2.4)
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Then
V=29, (R, L) p™ m! (2.5)

where

Pn=J (— )" a(R,y, L)dy 2.6)
From (2.3) we obtain the equation for ¥
] iR
S eosa— T+ v =\ $(Ry) b (R, R)dR,* @.7)

We differentiate (2.7) m times with respect to p and set p = 0, We write the obtained equations for
z,bm in the previous variables

2R cosa+ 2 (R) = Sx (R b(R,, R)dR,* @.8)
2 cosa+y(R) = {y (R b (R, R)aR,* 2.9

We employ the notation: B is the angle between R and R, g4 is the angle between R, and the vertical.
Then

cos Py = cos w cos § + sin o sin f

Equations (2.8) and (2.9) take the form

oz (E, cos o)

3L cosa + z (£, cosa) = z (B, cosBy) b (&, E, cos B)dE, d(cosB) {2.10)

T2
et

by

N

dy (E, cos o)

——r—— cos o -+ y (B, cos o)) = \ ¥ (E, cos By) b (Ey, E, cos B)dE,d(cosB) (2.11)

1

e g
| et

3. We will determine the mean-square distance and the mean-square angular deviation of the cracks
from an axis coinciding with the direction of propagation of the first crack, These quantities take the form

11 \
(@ (E, L)) = ( { 2(8, cosa, L) d (cos )] [T y (E, cos x, L)d (cos a)}'l (3.1)
1 L]
+1 +1
SAE, L)y = U ‘y(E, cosa, L)sin?a d (cos oc)] H‘ y(E, cosa, L) d(cos‘oc)}—1 3.2)
—] . —]

In order to find (d*) and (f?) it is necessary to determine the coefficients of the expansion of
X(E, cosa) and y(E, cos @) in Legendre polynomials,

oo

z(E, cosa) = > (K—}—é—)xK(E) Py (cosa) 3.3)
K=o

y{E, cosa) = KZ (‘K + —12-) Yg (E) Pp{cosa) (3.4)
=0

Then the unknown quantities take the form

(P (E)y =z, (E)y, (E) (3.5)
<PAE)Y = 2/3 [y, (E) — yu (B, (E) (3.6)
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We substitute (3.3) and (3.4) in Egs. (2.10) and (2.11), respectively, and simplify. Applying the addi-
tion theorem for Legendre polynomials

Py (cosB,) = Pg (cosa) Py (cos B) 3.7
provided that
+1 .
bi (Eyy E) = | b(&y, E, cos B) Px (cosB)d (cos B) (3.8)
-1
we find
+1 %
| 2By cosB)b(Ey, B, cosP)d(cosB) = 2 (K + 4 )2y () bk (Es, E) Py (cosar) (3.9)
—3 K=p

Multiplying (2.10) by Pk (cos &) and integrating with respect to cos a from —1 to +1, we obtain

2B 4 20 (B) = 20 (B)) by (B, E)dE, (3.10)

E

But x(E, cos &) is proportional to sin?«; accordingly, on the basis of hypothesis 3) we can neglect the
expression

+1
2, (E) — 2o (E) = j z(E, cosa)(cosa — 1)d(cosa) (3.11)

~-1

ie., replace x; (E) in (3.10) by x,(E).

Solving the equation obtained by means of a Mellin transformation, we obtain

Stiy
zﬂ(EiL)=%:Lz S (%

i

V1)@ (s, Lyds (3.12)

where
v = (2mi)t

L —t(s)L 1 :
Qs L) = 3o =t O o Laexp[—#(9) L] (3.13)

It can be shown that the mean number of cracks at a distance L in the plate is given by the expression

'o+‘m

; —(s+1)
Yo(E, L) =5~ S ({;—) “oxp(—t(s) Lids (3.14)
iy
where
ts)=1—{ (&) Eudo By, BYa () 3.15)
1]

if branching began from a single crack with energy E,.

Then the mean-square distance of the cracks from the branching axis, coinciding with the direction of
propagation of the first crack, is equal, in accordance with expression (3.5), to the ratio of (3.12) to (3.14).

Multiplying (2.11) by Pk (cos @) and integrating with respect to cos a from —1 to +1, we obtain
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2 Hy (B)+ Ha (B + U (B) = e (B b (Ey, E) O,
E

where

K

K41
Hi=gtr: =gy

EFL

3.16)

By virtue of hypothesis 3) we neglect terms depending on the coefficient (1 —~ cos «)?, which varies as

the mean of the fourth power of o.

Substituting K = 0, K = 1 in Eq. (3.16) and subtracting the results, we find

2 (0 (B) — 1o (BN + 190(8) — ya (BY) = § [0 (B) — va (Bl by (B, E)

E

+ i Yo (Ey) [bo (Byy E) — by (Ey, B)]dE,

The solution of this equation, obtained by means of a Mellin transformation, has the form

)
2 E \~+
2 e lB L)~ 1 (B, L)} = 53 S (&)

fo—tes

j (s) G{s)ds-

where

G(s) =expl—t(s— 1)Ll —expi—t(sg) L]

o0

(@)~ (s — 0170 = 5§ (5] B 1bo (Er, B)— by (Br, BNl ()

It can be shown that by (E,, E) and by(E,, E) — by (E;, E) have the form

™

bo(En B = § (2]t —ands

So—%a0

%
sot o —(s+1)

S E B —bE B =2 | (&) @—aneds

Sp—t 0

where
g1 =qINL()l, g =¢qINl(s—1)]

glo)=1—211 — (1 +a)leric?
n{s) =02 —1{s) —I(s—DIi(s) —1{s— 1)]*

1) = 1 —2 [ [ b (o, o) dysy dpy
00

(3.17)

(3.18)

3.19)

(3.20)

3.21)

3.22)

(3.23)
(3.24)

(3.25)

N is the mean number of branchings that a crack undergoes in passing through an inhomogeneity, X 4, &5}
is the probability of the energies of the cracks formed being in the ratios uy, #, to the energy of the first

crack.
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From Egs. (3.15) and (3.21) there follows

£(s) = q [NVL(s)] (3.26)
and from (3.20) and (3.22)

is) =n() (3.27)

Thus, the mean-square angular deviation from an axis coinciding with the direction of propagation of
the first crack is equal, in accordance with expression (3.6), to the ratio of (3.18) to (3.14).

4. In order to obtain results we write the initial conditionfor the number of cracks at a distance L
from the edge of the plate
Yo (E, L =0) =8 (E — E,) 4.1)
Yi(E, L =0)=1 | 4.2)
The expression for y,(E, L) is given in (3.14) and

Sot-Eog

Yo(B, L)=5g § (5) exol—t(21% 4.3)

Se—t,

where t(s) is given by (3.26), (3.25), and (3.23).

The mean-square distance of the cracks from the branching axis has the form

LTS
~(3+1)
@ ED=prrrr | (&) 1©Q6 Dds 4.4)
Sp—iog’
stde
DE D= vz § (5) 1006 L) 4.5)
Syt

where the values of v,j(s) and Q(s, L) were determined in Sec. 3.

Thus, the mean-square distance from the branching axis of the cracks

5 - - ‘o s .
5

’ 7 formed in a plate as a result of impact is inversely proportional to the
. /‘L‘Jﬁ energy of the first crack and after first increasing begins to decrease as a

7 ///' T F result of the departure of the cracks from the energy interval in question.
Ryye For the mean-square angular deviation of the cracks from the branch-

ing axis we have
&z 1§ § w
Fig. 2 sotteo
) . ) E \—(s+1) .
<f2(E1 L)> = 3o (E,vL)Eoz S (_E'_;) ) ](S)G(S) dS (4.6)

o

270
z £ Sott

258~ : FYE L)S = o1 55 S () 066 % @.7

£y Bo—tog,

242 //
sl

where G(s) is given hy (3.19).

Thus, the mean-square angular deviation of the cracks from a branch-

o ing axis coinciding with the direction of propagation of the first crack in a
73 v ‘”ﬂ, semi-infinite elastic-brittle inhomogeneous plate is inversely proportional
to the energy of the first crack and after initially increasing tends to a cer-
Fig.3 tain constant value, :
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In Figs. 2 and 3 we have plotted in relative units the dependence on the length of the plate of the quan-
tities s and z, which are respectively equal to the square roots of the mean-square distance and the mean-
square angular deviation of the cracks from the branching axis ina semi-infinite inhomogeneous plate, whose
edge is subjected to the action of a unit impact load, In this case branching begins from 2 single crack with
energy E;.

Comparison with the crack branching data for sheets of glass obtained by Shardin and co-workers [3]
shows that the results of the proposed theory (increase of the mean-square distance and the mean-square
angular deviation of the cracks from the branching axis in aquasi-homogeneous plate) are in qualitative
agreement with the experimental data.

In [3] the procedure for loading the test specimens was as follows, The sheets of glass were first
loaded in tension., Then fracture was initiated by the impact of a knife edge against the edge of the sheet.
In this case the mean-square distance and the mean-square angular deviation from a branching axis coin-
ciding with the direction of propagation of the first crack continuously increased, Obviously, this was be-
cause the energy of the cracks formed increased at the expense of the elastic energy accumulated in the
specimen-machine system.

Thus, it is not possible to expect complete qualitative agreement between the experimental and theo~
retical data (for the particular case of a quasi-homogeneous plate) in view of the difference between the as-
sumed plate loading procedure and that employed in [3].

The author thanks Yu. N. Rabotnov for his valuable comments,
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